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Abstract
For the Kowalevski gyrostat, a change of variables similar to that for the
Kowalevski top is done. We establish one-to-one correspondence between
solutions of the Kowalevski gyrostat and the Clebsch system and demonstrate
that Kowalevski variables for the gyrostat practically coincide with elliptic
coordinates on a sphere for the Clebsch case.

PACS numbers: 02.30.Ik, 02.30.Uu, 02.30.Zz, 02.40.Yy, 45.30.+s

1. Introduction

The aim of this paper is to extend the Kowalevski treatment of the top [14] to the gyrostat and
to incorporate the gyrostat into the Heine–Horozov scheme [5] that reproduces separation of
variables for the top.

Let two vectors J and x be coordinates on the phase space M. As a Poisson manifold M
is identified with Euclidean algebra e(3)∗ with the Lie–Poisson brackets

{Ji, Jj } = εijkJk, {Ji, xj } = εijkxk, {xi, xj } = 0, (1.1)

where εijk is the totally skew-symmetric tensor. These brackets have two Casimir functions

A = x2 ≡
3∑

k=1

x2
k , B = (x ·J) ≡

3∑
k=1

xkJk.

Fixing their values one gets a generic symplectic leaf of e(3)

Oab: {x,J : A = a, B = b},
which is a four-dimensional symplectic manifold.

The equations of motion on e(3)∗ are given by the customary Euler–Poisson equations

X: J̇ = J × ∂H

∂J
+ x × ∂H

∂x
, ẋ = x × ∂H

∂J
, (1.2)

where x × z means cross product of two vectors.
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The Hamilton function for the original Kowalevski top is given by

Htop = 1
2

(
J 2

1 + J 2
2 + 2J 2

3

)
+ cx1, c ∈ C.

This Hamiltonian and additional integral of motion Ktop = ξ1 · ξ2 are in involution and define
a moment map whose fibres are Liouville tori in Eab. Here

ξ1 = z2
1 − 2c(x1 + ix2), ξ2 = z2

2 − 2c(x1 − ix2) (1.3)

and

z1 = J1 + iJ2, z2 = J1 − iJ2. (1.4)

The Kowalevski gyrostat [8, 18] is an integrable extension of the corresponding top
defined by the following constants of motion:

H = Htop − λJ3 = 1
2

(
J 2

1 + J 2
2 + 2J 2

3 − 2λJ3
)

+ cx1,
(1.5)

K = ξ1ξ2 + 4λ((J3 − λ)z1z2 − (z1 + z2)cx3)

in involution {H,K} = 0. The gyrostat generalization of the Kowalevski top is essential
because the corresponding additional terms in the Hamiltonian mimic quantum corrections to
the top [8].

2. The Kowalevski gyrostat in the Kowalevski s-variables

We will introduce variables s1,2 for the Kowalevski gyrostat step by step following the original
papers [14] and [13] where the separation of variables for the top was constructed.

First we made a transition from initial variables to new variables ξ1,2 (1.3), z1,2 (1.4) and
organize four constants of motion in the following matrix identity:(

4H 4cB

4cB 4c2A − K

)
= 4

(
J 2

3 cx3J3

cx3J3 c2x2
3

)
− 4λ

(
J3 0
0 z1z2(J3 − λ) − c(z1 + z2)x3

)
+

(
(z1 + z2)

2 z1z2(z1 + z2)

z1z2(z1 + z2) z2
1z

2
2

)
−

(
ξ1 + ξ2 ξ1z2 + ξ2z1

ξ1z2 + ξ2z1 ξ1z
2
2 + ξ2z

2
1

)
. (2.1)

The second step consists of exclusion of two variables x3 and J3 using velocities
żi = {H, zi}

x3 = i

c

ż1z2 + z1ż2

z1 − z2
, J3 = i(ż2 + ż1)

(z1 − z2)
+ λ. (2.2)

Similarity transform Ut(·)U of the both sides of (2.1) with auxiliary matrix U

U =
(

z1 z2

−1 −1

)
, U t =

(
z1 −1
z2 −1

)
(2.3)

brings us to the following matrix identity for the gyrostat:

4

(
ż2

1 −ż1ż2

−ż1ż2 ż2
2

)
+ 4iλ(z1 − z2)

(
ż1 0
0 ż2

)
+ (z1 − z2)

2

(
ξ1 −2H

−2H ξ2

)
−

(
R(z1, z1) R(z1, z2)

R(z1, z2) R(z2, z2)

)
= 0. (2.4)

Here

R(z1, z2) = z2
1z

2
2 − 2H

(
z2

1 + z2
2

) − 4cB(z1 + z2) − 4c2A + K. (2.5)
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The diagonal entries of identity (2.4) allows us to express variables ξ1,2 as

ξk = 4iλżk

z1 − z2
− 4ż2

k − R(zk, zk)

(z1 − z2)2
, k = 1, 2, (2.6)

and one gets integrals H and K (1.5) in terms of biquadratic polynomial R (2.5) and two pairs
of Lagrangian variables z1,2 and ż1,2

H = −4ż1ż2 + R(z1, z2)

2(z1 − z2)2
, (2.7)

K = − 16ż1ż2

(z1 − z2)2
λ2 − 4iλ

(
ż1

∂

∂z1
− ż2

∂

∂z2

)
R(z1, z2)

(z1 − z2)2

+

(
4ż2

1 − R(z1, z1)
)(

4ż2
2 − R(z2, z2)

)
(z1 − z2)4

. (2.8)

The unexpected appearance of differential operator in this relation is a main qualitative
difference of the gyrostat from the top.

On the level surface of integrals of motion

� = {A = a, B = b,H = h,K = k} (2.9)

relations (2.7) and (2.8)

�1,2(z1, z2, ż1, ż2, A,B,H,K)|� = 0 (2.10)

can be considered as equations of motion determining a two-dimensional dynamical system.

Lemma 1. On the level surface of integrals of motion � there is one-to-one correspondence
between solutions xi(t) and Ji(t) of the Kowalevski gyrostat problem and solutions z1,2(t) of
this dynamical system.

The map {x,J} → {z1,2, ż1,2} is given by (1.4). The inverse map consists of relations (2.2)
and combination of the mapping (z1,2, ż1,2) → (z1,2, ξ1,2) (2.6) with the following equations:

x1 = 1

4c

(
z2

1 + z2
2 − ξ1 − ξ2

)
, J1 = 1

2
(z1 + z2)

x2 = − i

4c

(
z2

1 − z2
2 − ξ1 + ξ2

)
, J2 = i

2
(z1 − z2).

So, instead of the initial equations of motion (1.2) we can solve the auxiliary dynamical
equations (2.10). Unfortunately variables z1,2 do not commute {z1, z2} �= 0, so one has to look
for a more convenient parametrization.

Associated with the fourth degree polynomials R(zk, zk) (2.5)

R(zk, zk) = a0z
4
k + 4a1z

3
k + 6a2z

2
k + 4a3zk + a4, ai ∈ R

the differential equations

ż1√
R(z1, z1)

= ± ż2√
R(z2, z2)

, (2.11)

originally appeared in the Euler studies of equation of lemniscate and invariance of the
corresponding elliptic integrals [3]. In particular Euler proved that equations (2.11) have an
algebraic integral

E(z1, z2, s) = (z1 − z2)
2s2 − R(z1, z2) s + W = 0, (2.12)
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where R(z1, z2) is a mixed biquadratic form similar to (2.5)

R(z1, z2) = a0z
2
1z

2
2 + 2a1z1z2(z1 + z2) + 3a2

(
z2

1 + z2
2

)
+ 2a3(z1 + z2) + a4,

and

W = R(z1, z2)
2 − R(z1, z1)R(z2, z2)

4(z1 − z2)2
.

In algebro-geometric terms [17], Euler studied automorphisms (u1, z1) → (u2, z2) of the
algebraic curve of genus one

C: u2 = R(z, z),

which change a sign of the corresponding holomorphic form dz/u → ± dz/u. Thus every
algebraic curve of genus one is isomorphic to a complex torus (cubic elliptic curve), which is
equivalent to a Jacobian of C. These automorphisms are parametrized by points of a smooth
elliptic curve

�: η2 = P3(s), P3(s) = 4s3 + g1s
2 + g2s + g3,

where gk are functions on initial parameters a0, . . . , a4. According to Weil [17], if
Ok = (uk, zk), k = 1, 2, are two points of C and Nk = (ηk, sk), k = 1, 2, denote two
points of � related by O1 = N1 + N2 and O2 = N1 − N2 then

dz1

u1
+

dz2

u2
= ds1

η1
,

dz1

u1
− dz2

u2
= ds2

η2
.

This is an infinitesimal version of the Weil interpretation of the Euler results. These results
are independent of the choice of affine coordinates (u, z) and (η, s) of the curves C and �,
respectively.

The third step of Kowalevski in [14] is an introduction of her famous variables s1,2

s1,2 = R(z1, z2) ± √
R(z1, z1)R(z2, z2)

2(z1 − z2)2
, (2.13)

which are transcendental integrals of the corresponding Euler equations (2.11) [3]. We use
her definition of s1,2 substituting integrals of motion of the top with that of the gyrostat. By
definition (1.4) in physical domain variables s1,2 are real and satisfy the inequality

s1 � s2. (2.14)

Lemma 2. On the level surface of integrals of motion � we have one-to-one correspondence
between variables z1,2 (1.4) and s1,2 (2.13).

The algebro-geometric proof may be found in [17].
The variables s1,2 are eigenvalues of an auxiliary spectral problem(

R(z1, z1) R(z1, z2)

R(z1, z2) R(z2, z2)

)
	 = 2sσ1(z1 − z2)

2	, σ1 =
(

0 1
1 0

)
, (2.15)

that is naturally extracted from (2.4). Its characteristic polynomial,

E(s) = (z1 − z2)
2(s − s1)(s − s2), (2.16)

coincides with the Euler algebraic integral (2.12). The matrix of eigenfunctions 	 of the
spectral problem (2.15) reads

	 =


1√

R(z1, z1)

1√
R(z2, z2)

− 1√
R(z1, z1)

1√
R(z2, z2)

 . (2.17)
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The idea of Kowalevski to pass to new variables s1,2 is appeared to be very fruitful in her
treatment of the top. For the Kowalevski gyrostat as well as for the top these variables have
the following main property:

Theorem 1. Functions s1,2 (2.13) are Poisson commute {s1, s2} = 0.

Proof. For λ = 0 the straightforward proof may be founded in [4, 9]. For λ �= 0 this
unexpected and crucial observation was obtained by direct calculation of the Poisson brackets.

�

Theorem 2. On the level surface of integrals of motion (2.9) variables s1,2 (2.13) satisfy the
following dynamical equations:(
(s1 − s2)

2ṡ2
k + λ

√−ϕ1ϕ2ṡk − βkϕk

)2
+ λ2

(
ṡ2
k +

(2H + s1 + s2)ϕk

s1 − s2

)
ϕ2

k = 0, k = 1, 2,

(2.18)

where βk is given by

βk = (2H + s1 + s2)λ
2 + s2

k + 2Hsk + H 2 − K

4
. (2.19)

Proof. Function E(z1, z2, s) (2.12), (2.16) is a quadratic polynomial with respect to any of
its three arguments z1, z2, s. Its partial derivatives with respect to one of the variables are
discriminants of the corresponding quadratic equations. Squares of its partial derivatives with
respect to one of the variables are factorized into functions of the other two(

∂E
∂s

)2

= R(z1, z1)R(z2, z2),

(
∂E
∂zk

)2

= R(zk, zk)P3(s), k = 1, 2.

Here polynomial P3(s) is given by

P3(s) = 4s3 − 8Hs2 + 4H 2s − Ks + 4c2As + 4c2B (2.20)

Because the complete differential of E(s, z1, z2) (2.12) is zero

∂E
∂s

ds +
∂E
∂z1

dz1 +
∂E
∂z2

dz2 = 0,

one gets relations between the differentials of the variables of both types

ds1,2√
P3(s1,2)

= dz1√
R(z1, z1)

± dz2√
R(z2, z2)

. (2.21)

In matrix form the relations for velocities look like ṡ1√
ϕ1

ṡ2√
ϕ2

 = 	

(
ż1

ż2

)
, (2.22)

where we denoted for brevity

ϕk ≡ P3(sk). (2.23)

Signs at square roots in (2.21), (2.22) are compatible with definition of s1,2 (2.13) and 	

(2.17).
Using (2.5)–(2.22) we can express integrals of motion H (2.7) and K (2.8) in terms of

cubic polynomial P3(s), variables s1,2 and their velocities ṡ1,2

H = s1 − s2

2

(
ṡ2

1

ϕ1
− ṡ2

2

ϕ2

)
− s1 + s2

2
, (2.24)
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K

4
= (2H + s1 + s2)λ

2 − λ
√−ϕ1ϕ2

(
ṡ1

ϕ1
+

ṡ2

ϕ2

)
+ (s1 − s2)

(
s2ṡ

2
1

ϕ1
− s1ṡ

2
2

ϕ2

)
− s1s2 + H 2.

(2.25)

Here the Hamiltonian H and coefficients of integral K at even powers of the gyrostatic parameter
λ are easy calculated using definitions (2.13) and (2.22) only. For the linear in λ term in
K = K2λ

2 + K1λ + K0 one gets at first

K1 = −4i
ṡ1√
ϕ1

(√
R(z1, z1)

∂

∂z1
−

√
R(z2, z2)

∂

∂z2

)
R(z1, z2)

(z1 − z2)2

− 4i
ṡ2√
ϕ2

(√
R(z1, z1)

∂

∂z1
+

√
R(z2, z2)

∂

∂z2

)
R(z1, z2)

(z1 − z2)2
.

Due to the inverse of (2.21) one converts derivatives ∂/∂z1,2 to ∂/∂s1,2

K1 = −4i

(
ṡ1

√
ϕ2√
ϕ1

∂

∂s1
+ ṡ2

√
ϕ1√
ϕ2

∂

∂s2

)
R(z1, z2)

(z1 − z2)2
.

Keeping in mind from definition (2.13) that one gets s1 + s2 = R(z1, z2)/(z1 − z2)
2, and

including i into the square root we obtain finally

K1 = −4

(
ṡ1

√−ϕ2

ϕ1
+ ṡ2

√−ϕ1

ϕ2

)
.

Equations (2.24) and (2.25) have the form

�̃1,2(s1, s2, ṡ1, ṡ2, A,B,H,K)|� = 0,

and depend on the commuting variables s1,2, their velocities ṡ1,2 and integrals of motion only.
Excluding one of the velocities we obtain two equations (2.18) of fourth order in ṡk . �

Equations of motion (2.18) determine some two-dimensional dynamical system on �.

Lemma 3. On the level of integrals of motion � (2.9) there is one-to-one correspondence
between solutions xi(t) and Ji(t) of the Kowalevski gyrostat problem and solutions s1(t) and
s2(t) of the dynamical equations (2.18).

The proof consists of a combination of lemmas 1 and 2.

Remark. At λ = 0, equations (2.18) are reduced to the Kowalevski top equations [14, 13]

(−1)k(s1 − s2)ṡk =
√

P5(sk), k = 1, 2,

which admit integration on � (2.9) by the Jacobi inversion theorem. Here P5(s) = P3(s)P2(s)

is a fifth-order polynomial, P3(s) is from (2.20) and

P2(s) = s2 + 2Hs + H 2 − K

4

is a limiting value of βk (2.19), P2(sk) = βk|λ=0.

At λ = 0 transformation {s1,2, ṡ1,2}|� → {Ji, xi} is discussed in [14, 13] in detail.
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3. The Kowalevski gyrostat and the Clebsch system

Let two vectors l and p be coordinates on the phase space M. As a Poisson manifold M is
identified with the algebra e(3)∗ equipped with brackets

{li , lj } = εijklk, {li , pj } = εijkpk, {pi, pj } = 0. (3.1)

These brackets respect two Casimir elements

A = (p,p), B = (p, l). (3.2)

The following integrable case for the Kirchhoff equations on e(3) was found by Clebsch [2]

X : l̇ = p × Qp, ṗ = p × l. (3.3)

Here Q is a constant symmetric matrix, det Q �= 0. Equations of motion (3.3) are generated
by brackets (3.1) and the Hamilton function

H = 1
2 l2 + 1

2 (Qp,p). (3.4)

The second integral of motion reads as

K = (Ql, l) − (Q∨p,p), (3.5)

where Q∨ stands for adjoint matrix, i.e. cofactor matrix. In our case it reads Q∨ = (det Q)Q−1.
If B = 0, flow (3.3) is equivalent to that of the Neumann system describing the motion of

a mass point on the sphere p2 = A under the influence of the force −Qp.

3.1. The Clebsch system in elliptic coordinates

Minkowski [15] identified the Clebsch system with the Jacobi problem of geodesic motion on
ellipsoid for which elliptic coordinates u1,2 were introduced by Jacobi. In 1895 Kobb started the
integration procedure in the Euler angles and passed to variables ξ = tan(θ/2), ν = tan(φ/2),
which are equivalent to variables u1,2 [7]. In 1959 Kharlamova [6] used elliptic coordinates
directly for integration of the second flow of the Clebsch system associated with K.

In order to explain the method proposed in [6, 7] we reproduce some simple formulae.
Using equations of motion (3.3) and the Casimir elements (3.2) we express angular momenta
l via Lagrangian variables p, ṗ

l = 1

A
(Bp + ṗ × p). (3.6)

Then we introduce variables u1,2 as roots of the following function:

e(µ) = (µ − u1)(µ − u2) = µ2 +

(
(Qp,p)

A
− tr Q

)
µ +

(Q∨p,p)

A
. (3.7)

Variables u1,2 are real and we can always impose

u1 � u2 (3.8)

similar to (2.14). Substituting u1,2 and their velocities u̇1,2 into (3.4) and (3.5) one gets the
Hamilton function

H = u1 − u2

2

(
u̇2

1

ϕ1
− u̇2

2

ϕ2

)
+

B2

2A
+

1

2
(tr Q − u1 − u2)A,

and the second integral of motion

K = (u1 − u2)

(
u2u̇

2
1

ϕ1
− u1u̇

2
2

ϕ2

)
− B√

A

(
u̇1

√
−ϕ2

ϕ1
+ u̇2

√
−ϕ1

ϕ2

)
+
B2

A
(tr Q − u1 − u2) − u1u2A
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in terms of variables u1,2, their velocities u̇1,2 and the cubic polynomial

ϕk = 4 det(Q − ukI).

Below this polynomial will be identified with the cubic polynomial ϕk (2.23) for the Kowalevski
gyrostat for which we used the same notation.

Excluding one of the velocities from these equations we obtain two equations of fourth
degree in each of the velocities depending on both variables u1 and u2(
A(u1 − u2)

2u̇2
k + B

√
−Aϕ1ϕ2u̇k + βkϕk

)2

+B2

(
Au̇2

k +
(A2(u1 + u2 − tr Q) + 2AH − B2)ϕk

u1 − u2

)
ϕ2

k = 0. (3.9)

Here βk is a cubic polynomial also depending on u1 and u2

βk = B2(u1 + u2 + uk − tr Q) − A
(
Au2

k + (2H − Atr Q)uk − K
)
.

Equations (3.9) were solved in quadratures in [6, 7]. Obviously u1,2 are not the separated
variables for the Clebsch system. We think that they will be helpful in construction of
separation of variables for the Clebsch system.

Lemma 4. There is one-to-one correspondence between solutions of the Kirchhoff equations
(3.3) in the Clebsch case and solutions of the dynamical equations (3.9).

Proof. Variables u1,2 as functions of pj are given by (3.7). In order to construct inverse
mapping let us make a suitable rotation

p̃ = V p, l̃ = V l, Q → Q̃ = V QV −1 = diag(a1, a2, a3), (3.10)

which diagonalize the matrix Q. In this case coordinates u1,2 coincide with elliptic coordinates
on sphere p2 = A defined by

e(µ) = (µ − u1)(µ − u2) = det(Q − µI)
A

(
p̃2

1

µ − a1
+

p̃2
2

µ − a2
+

p̃2
3

µ − a3

)
. (3.11)

The mapping of the elliptic coordinates u1,2 and their velocities u̇1,2 to variables p and l is
well studied [1]. Namely, substituting solutions of the equations (3.9) into

pj =
√√√√A

∏2
k=1(aj − uk)∏3
i �=j (aj − ai)

, (3.12)

one gets vector p̃(t), which after inverse rotation with respect to (3.10) gives rise to solutions
p(t) and l(t) (3.6) of the Clebsch system. �

3.2. Mapping of the Kowalevski gyrostat flow onto the Clebsch flow

The idea of the map Kowalevski top flow (1.2) onto the Neumann flow originally appeared in
Heine and Horosov [5, 16] for the Kowalevski top and was extended to so(4), so(3, 1) in [10].

Let us introduce the following complex vector-functions:

p = α

(
−i

J1

J2
,
J 2

1 + J 2
2 + 1

2J2
, i

J 2
1 + J 2

2 − 1

2J2

)
, α ∈ R, (3.13)

and

ltop =
(

−i
cx3

J2
,

2cx3J1 − J3
(
J 2

1 + J 2
2 − 1

)
2J2

, i
2cx3J1 − J3

(
J 2

1 + J 2
2 + 1

)
2J2

)
, (3.14)
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such that

A = (p,p) = α2, B = (p, ltop) = 0. (3.15)

We permuted the first and the second entries in original vectors [5] to make the gyrostat
formulae slightly more symmetric.

In order to describe mapping of the gyrostat flow (1.2) onto the Clebsch flow (3.3) we
have to shift the vector ltop by the rule

l = ltop + α−1λ(p + ik × p), (3.16)

where k = (1, 0, 0) is a unit vector. In comparison with (3.15) the scalar product of vectors l
and p for the gyrostat becomes different from zero

B = (p, l) = αλ.

For the Kowalevski top and gyrostat variables p, ltop and p, l are coordinates on the
different spaces Mtop and M with different brackets (3.1) {·, ·}top and {·, ·} forming two
samples of e(3) algebra (3.1). With respect to the top brackets {·, ·}top the gyrostat variables
p, l form the central extension of e(3)top which is contracted to e(3)top in the limit λ → 0.

Similar to the top [5] let us introduce symmetric matrix Q linearly depending on integrals
of motion of the Kowalevski gyrostat and the Casimir elements on the initial algebra (1.1)

Q = α−2

 −H −icb icb

−icb − 1
4 + c2� i

(
1
4 + c2�

)
icb i

(
1
4 + c2�

)
1
4 − c2�

 , � = a − K/4c2. (3.17)

This matrix remains constant with respect to the dynamics of the Clebsch system on M.

Theorem 3. Let us identify M with M by the map {x,J} → {p, l} (3.13), (3.16) such that
the Casimir elements are equal to

A = a, B = b, A = α2, B = αλ. (3.18)

If the matrix Q is given by (3.17), then

2H = −H + λ2, 4α2K = K − 4λ2H, (3.19)

and vector field X (1.2) for the Kowalevski gyrostat on M coincides with vector field X (3.3)
for the Clebsch system on M. A similar equality holds for the second commuting flows of the
Kowalevski gyrostat and the Clebsch system.

The proof is straightforward.

3.3. Mapping of the Clebsch flow onto the Kowalevski gyrostat flow

Below without loss of generality we put α = |p|2 = 1 in (3.18). In this case according to
(3.19) values of integrals for the Kowalevski gyrostat and the Clebsch system are connected
by the relations

H = −2H + λ2, K = 4K − 8λ2H + 4λ4. (3.20)

Inserting p (3.13) and l (3.16) into the generating function e(µ) (3.7) of u-variables, one gets

e(µ) = 1

(z1 − z2)2
E(s)|s=−µ−H ,

where E(s) (2.16) is the generating functions of the s-variables. Combining this fact with
proposition 3.2 we have

uk = −sk − H, u̇k = −ṡk. (3.21)
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The inverse map reads as

sk = −uk + 2H − λ2, ṡk = −u̇k (3.22)

Here ṡk = {H, sk}1 and u̇k = {H, uk}2 and {}1,2 mean the Poisson brackets (1.1) on M and the
Poisson brackets (3.1) on M, respectively.

Lemma 5. Mappings (3.21) and (3.22) define one-to-one correspondence between solutions
of equations (3.9) for the Clebsch system and solutions of equations (2.18) for the Kowalevski
gyrostat on the corresponding to (3.19), (3.20) and (3.18) level surfaces of integrals.

Proof. It is easy to see that substituting (3.18),(3.19) and (3.21) into equation (3.9) one gets
equation (2.18). �

Taking into account lemmas 3, 4 and 5 we arrive at one of the main results of the paper:

Theorem 4. Solutions of the Clebsch problem give rise to solutions of the Kowalevski gyrostat
problem and vice versa.

Proof. The map {x,J} → {p, l} (3.13)–(3.16) allows us to construct solutions of the Clebsch
problem starting with the solutions of the Kowalevski gyrostat problem. �

Moreover, on the level surfaces of integrals of motion we can decompose this map
{x,J} → {p, l} in the following way:

{x,J} → {s1,2, ṡ1,2} → {u1,2, u̇1,2} → {p, l}.
According to the results of lemmas 3, 4 and 5 and fixed inequalities between u1,2 and s1,2 (3.8),
(2.14) each of the intermediate mappings is a one-to-one correspondence. So, there is the
inverse map {p, l} → {x,J}. We cannot rewrite this transformation in a compact form because
the map {s1,2, ṡ1,2} → {x,J} is much more complicated than the map {u1,2, u̇1,2} → {p, l}
(3.12) (see [13]).

Thus we establish isomorphism of the spaces of the solutions for the Clebsch problem and
the Kowalevski gyrostat problem. It means that we can construct solutions of the Kowalevski
gyrostat problem using a known solution of the Clebsch system obtained either by Kobb–
Kharlamova [7, 6] or by Kötter [12].

We have to underline that mappings (3.21), (3.22) and hence (3.13), (3.16) define trajectory
equivalence of the Clebsch system and of the Kowalevski gyrostat on the level surfaces of
integrals of motion (3.19), (3.20) and (3.18) . Of course, these mappings do not preserve the
Poisson structure of the corresponding phase spaces.

4. Conclusion

The established trajectory isomorphism between proper parametrized solutions of the
Kowalevski gyrostat and the Clebsch system allowed us to interpret Kowalevski variables
as elliptic coordinates on the 2-sphere for the Clebsch system. We hope that the traced
correspondence between two systems will help us to construct solution of the gyrostat problem
using various known solutions of the Clebsch model.

A similar correspondence may be obtained for the Kowalevski gyrostat on so(4) algebra,
which is equivalent to the generalized Kowalevski gyrostat on e(3) [11]. For so(4) top initial
vector lso(4) was obtained in [10]. In the gyrostat case we have to substitute it by rule (3.16).



The Kowalevski gyrostat and the Clebsch problem 2927

Acknowledgments

The authors thank V V Sokolov for revival our interest to the Kowalevski gyrostat and for useful
discussions. The research of AVT was partially supported by the RFBR grant 02-01-00888.

References

[1] Arnold V I 1989 Mathematical Methods of Classical Mechanics 2nd edn (Berlin: Springer)
[2] Clebsch A 1870 Math. Ann. 3 238–62
[3] Euler L 1768 Calculi Integralis vol 1 (Ac. Sc. Petropoli)
[4] Dullin H R, Richter P H and Veselov A P 1998 Reg. Chaot. Dyn. 3 18–26
[5] Haine L and Horozov E 1987 Physica D 29 173–180
[6] Kharlamova E I 1959 Izv. Sib. Otd. AN SSSR 6 7–17
[7] Kobb G 1895 Bull. Soc. Math. France XXIII 210–5
[8] Komarov I V 1787 Phys. Lett. A 123 14–15
[9] Komarov I V and Kuznetsov V B 1987 Theor. Math. Phys. 17 335–43

[10] Komarov I V and Kuznetsov V B 1990 J. Phys. A: Math. Gen. 23 841–6
[11] Komarov I V, Sokolov V V and Tsiganov A V 2003 J. Phys. A: Math. Gen. 36 8035–48
[12] Kötter F 1892 J. Reine Angew. Math. 109 51–81, 89–111
[13] Kötter F 1893 Acta Math. 17 209–63
[14] Kowalevski S 1889 Acta Math. 12 177–232
[15] Minkowski H 1888 Sitzungsber. König. Preuss. Akad. Wiss. Berl. 30 1095–110
[16] Perelomov A I 2002 Teor. Math. Phys. 131 197–205
[17] Weil A 1983 Euler and the Jacobians of elliptic curves Arithmetic and Geometry vol 1 (Prog. Math. 35)

(Basle: Birkhaüser) pp 353–9
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